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ME-221
PROBLEM SET 3

Problem 1

Consider the mechanical system shown in Figure 1. A DC motor is connected to a pinion
rack mechanism with a mass-damper load. The current flowing through the motor control
circuit im(t) with resistance Rm is supplied by the input voltage source u(t) and the output
of the system is the velocity v(t) of the mass M. The motor-torque and back-emf (denoted
by Em) constants are given by Kt and Km, respectively. The motor has an inertia denoted
by J and the angular velocity of the shaft as well as the gear (with radius r) is given by
ω. The parameters fR and fT represent the viscous damping coefficients for the motor shaft
and the mass-damper unit, respectively.
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Figure 1: Rack and pinion mechanism driven by an electric motor

a) Derive the equations of motion.
b) Comment on the underlying assumptions and linearity of the model.

Problem 2

A block of mass m is held motionless on the frictionless plane of a wedge of mass M and
angle of inclination θ as shown in Figure 2. The plane rests on a frictionless horizontal
surface. The block is released.

a) Use the Lagrangian method to derive the horizontal acceleration of the wedge. Hint:
Impose a condition of contact between the block and the wedge.
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b) Note that we solved this problem using Newton’s method in the previous problem set
(Problem 2.5). Compare the two solutions.

6.9. PROBLEMS VI-25

6.9 Problems

Section 6.1: The Euler-Lagrange equations

6.1. Moving plane **

A block of mass m is held motionless on a frictionless plane of mass M and angle of
inclination µ (see Fig. 6.8). The plane rests on a frictionless horizontal surface. The
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Figure 6.8block is released. What is the horizontal acceleration of the plane? (This problem
already showed up as Problem 3.8. If you haven’t already done so, try solving it using
F = ma. You will then have a greater appreciation for the Lagrangian method.)

6.2. Two falling sticks **

Two massless sticks of length 2r, each with a mass m fixed at its middle, are hinged
at an end. One stands on top of the other, as shown in Fig. 6.9. The bottom end
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Figure 6.9

of the lower stick is hinged at the ground. They are held such that the lower stick
is vertical, and the upper one is tilted at a small angle ≤ with respect to the vertical.
They are then released. At this instant, what are the angular accelerations of the two
sticks? Work in the approximation where ≤ is very small.

6.3. Pendulum with an oscillating support **

A pendulum consists of a mass m and a massless stick of length `. The pendulum
support oscillates horizontally with a position given by x(t) = A cos(!t); see Fig. 6.10.
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Figure 6.10

What is the general solution for the angle of the pendulum as a function of time?

6.4. Two masses, one swinging ***

Two equal masses m, connected by a massless string, hang over two pulleys (of negli-
gible size), as shown in Fig. 6.11. The left one moves in a vertical line, but the right
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Figure 6.11

one is free to swing back and forth in the plane of the masses and pulleys. Find the
equations of motion for r and µ, as shown.

Assume that the left mass starts at rest, and the right mass undergoes small oscillations
with angular amplitude ≤ (with ≤ ø 1). What is the initial average acceleration
(averaged over a few periods) of the left mass? In which direction does it move?

6.5. Inverted pendulum ****

A pendulum consists of a mass m at the end of a massless stick of length `. The other
end of the stick is made to oscillate vertically with a position given by y(t) = A cos(!t),
where A ø `. See Fig. 6.12). It turns out that if ! is large enough, and if the pendulum
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is initially nearly upside-down, then surprisingly it will not fall over as time goes by.
Instead, it will (sort of) oscillate back and forth around the vertical position. If you
want to do the experiment yourself, see the 28th demonstration of the entertaining
collection in (Ehrlich, 1994).

Find the equation of motion for the angle of the pendulum (measured relative to its
upside-down position). Explain why the pendulum doesn’t fall over, and find the
frequency of the back and forth motion.

Section 6.2: The principle of stationary action

6.6. Minimum or saddle **

(a) In eq. (6.26), let t1 = 0 and t2 = T , for convenience. And let ª(t) be an easy-to-
deal-with “triangular” function, of the form

ª(t) =

Ω
≤t/T, 0 ∑ t ∑ T/2,
≤(1 ° t/T ), T/2 ∑ t ∑ T.

(6.93)

Figure 2: Moving plane

Problem 3

A mass M is free to slide along a frictionless rail. A pendulum of length l and mass m hangs
from M as shown in Figure 3. Let x be the coordinate of M and θ be the angle of the
pendulum. Find the equations of motion using the Lagrangian method.

6.11. SOLUTIONS VI-43

We have used the non-slipping condition to say that the present contact point is a distance
Rµ to the right of where m would be in contact with the ground. DiÆerentiating eq. (6.163),
we find that the square of m’s speed is v2

m = 2R2µ̇2(1 ° cos µ).

The position of M is (x, y)M = R(µ, 1), so the square of its speed is v2
M = R2µ̇2. The

Lagrangian is therefore

L =
1

2
MR2µ̇2 + mR2µ̇2(1 ° cos µ) + mgR cos µ, (6.164)

where we have measured both potential energies relative to the height of M . The equation
of motion is

MRµ̈ + 2mRµ̈(1 ° cos µ) + mRµ̇2 sin µ + mg sin µ = 0. (6.165)

In the case of small oscillations, we can use cos µ º 1 ° µ2/2 and sin µ º µ. The second and
third terms in eq. (6.165) are then third order in µ and can be neglected (basically, the middle
term in eq. (6.164), which is the kinetic energy of m, is negligible), so we find

µ̈ +
≥

mg

MR

¥
µ = 0. (6.166)

The frequency of small oscillations is therefore

! =

q
m

M

q
g

R
. (6.167)

Remarks: If M ¿ m, then ! ! 0. This makes sense.

If m ¿ M , then ! ! 1. This also makes sense, because the huge mg force makes the situation
similar to one where the wheel is bolted to the ground, in which case the wheel vibrates with a high
frequency.

Eq. (6.167) can actually be derived in a much quicker way, using torque. For small oscillations, the

gravitational force on m produces a torque of °mgRµ around the contact point on the ground. For

small µ, m has essentially no moment of inertia around the contact point, so the total moment of

inertia is simply MR2. Therefore, ø = IÆ gives °mgRµ = MR2µ̈, from which the result follows. |
6.14. Pendulum with a free support

Let x be the coordinate of M , and let µ be the angle of the pendulum (see Fig. 6.47). Then the
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position of the mass m in Cartesian coordinates is (x+` sin µ,°` cos µ). Taking the derivative
to find the velocity, and then squaring to find the speed, gives v2

m = ẋ2 + `2µ̇2 + 2`ẋµ̇ cos µ.
The Lagrangian is therefore

L =
1

2
Mẋ2 +

1

2
m(ẋ2 + `2µ̇2 + 2`ẋµ̇ cos µ) + mg` cos µ. (6.168)

The equations of motion obtained from varying x and µ are

(M + m)ẍ + m`µ̈ cos µ ° m`µ̇2 sin µ = 0,

`µ̈ + ẍ cos µ + g sin µ = 0. (6.169)

If µ is small, we can use the small angle approximations, cos µ º 1 ° µ2/2 and sin µ º µ.
Keeping only the terms that are first-order in µ, we obtain

(M + m)ẍ + m`µ̈ = 0,

ẍ + `µ̈ + gµ = 0. (6.170)

The first equation expresses momentum conservation. Integrating it twice gives

x = °
≥

m`

M + m

¥
µ + At + B. (6.171)

The second equation is F = ma in the tangential direction. Eliminating ẍ from eq. (6.170)
gives

µ̈ +
≥

M + m

M

¥
g

`
µ = 0. (6.172)

Figure 3: Pendulum with free support

Problem 4

A mass-spring-damper subsystem is located inside a container of mass m1 as shown in Figure
4. The container of height h is free falling in the vertical direction only. The subsytem
consists of mass m2, linear spring of constant k, and linear viscous damper of coefficient f .
Derive the equations of motion for the system using x1 and x2 as generalized coordinates,
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where x1 and x2 are the positions of m1 and m2 with respect to the ground, respectively.
Consider that the spring is at rest when x1 = x2.
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Figure 4: Mass-spring-damper system
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